DUKE

Characterization of highly selective & CNS-penetrant PARP1 inhibitors Cowley PM, McGuinness BE, Campbell GM and Wise A[#]

Background

First-generation PARP1 inhibitors have provided significant therapeutic benefit to patients whose tumours exhibit homologous repair deficiencies, including those harbouring BRCA mutations. their use has been associated with haematological However. toxicities that have restricted their application, particularly in combination with standard-of-care chemotherapy. All four FDAapproved PARP1 inhibitors are largely non-selective for the closely related enzyme PARP2, inhibition of which has been shown to drive haematotoxicity. Hence, the development of second-generation molecules highly selective for PARP1 over PARP2 offers a significant opportunity to

- 1) dramatically enhance therapeutic index,
- 2) enable additional precision medicine / combination approaches with chemotherapy, radiotherapy, immunotherapy and targeted agents and
- 3) expand the addressable patient population to those whose tumours carry additional DDR defects.

We have discovered two novel series of exquisitely PARP1-selective, CNS-penetrant inhibitors using X-ray crystallography and structurebased design. Herein we describe their characterization, exemplified by **DSB2455** and **DSB3218**.

<u>Duke Street Bio Ltd, 2 Duke St, London, UK</u>

			<i>In vitro</i> Pote						
		DSB	2455	DSB3	8218	Olaparib	AZD5305	AZD9574	
cal Binding y)	K	0.6 (1,300-fold)		0.7 (339-fold)		0.8 (0.6-fold)	0.7 (60-fold)	0.95 (>5,000-fold)	
T ¹ y)	(nM)	1.1 (>4,000-fold)		0.9 (1,445-fold)		3.0 (0.7-fold)	1.6 (180-fold)	2.3 (>5,000-fold)	
A1m)									
ell Titer Glo)		3		4		26	1	12	
rming Unit Inhibition	IC ₅₀	0.05		0.06		0.5	0.1	0.09	
n	(nM)	6		3		26	2	1	
tion		4		8		34	7	7	
ll Titer Glo)	IC ₅₀	7		2		65	2	4	
rming Unit Inhibition		0.2		0.2		2.5	0.3	0.2	
n	(1111)	3		4		-	2	2	
Trapping		1.9		3.6		39	0.7	4.2	
/ Heps CLint (µL/min/10 ⁶ cells)		<7.4	<1.9	<7.4	5.4	Table 1. <u>DS</u>	B2455 & DSB3	218	
nins) / Plasma Protein Binding (%)		>373	88.6	>373	81.5	are potent	: inhibitors o Land cell-base	of PARP1 in	
forms (µM)		>50		>50		high selectivity over PARP2, while			
nt Inhibition (μ M)		>50		>50		demonstrating excellent <i>in vitro</i> ADME			
A→B / Efflux Ratio		4.7	5.4	14.0	2.1	properties.			
n/s) A→B / Efflux Ratio		1	15.6	2.8	8.5	¹ Assay performed at Proteros Biostructure		structures GmbH	

In vivo Efficacy

ency & ADME

Table 2. DSB2455 demonstrates excellent in vivo PK

	DSB2455	DSB3218	AZD5305	A
PARP1-	2	2	9	
			-	
PARP3-	743	>5,000	141	>
PARP4-	>5,000	>5,000	821	>
PARP5a-	3,161	635	218	>
PARP5b-	2,482	506	91	>
PARP6-	>5,000	>5,000	1,155	>
PARP7-	>5,000	465	99	>
PARP8-	>5,000	>5,000	1,155	>
PARP10-	>5,000	>5,000	433	>
PARP11-	>5,000	467	9	>
PARP12-	>5,000	>5,000	4	>

Table 3. DSB2455 & DSB3218 exhibit excellent selectivity over other PARP proteins in NanoBRET² assays. ²Performed at Promega Corp.

Abstract 35678 2023

and prolonged residence time in surface plasmon resonance binding assays.

High affinity with very slow off-rate (no dissociation observed within 1 hr), unable to derive kinetic binding parameters.

Summary

We describe the characterization of novel CNSpenetrant, potent and selective PARP1 inhibitors. These molecules demonstrate excellent *in vitro* ADMET, *in vivo* PK and CNS penetrance, coupled with profound anti-tumour efficacy and tumour-targeting properties in genetically-defined mouse models. Our data predict low therapeutic dosing with the potential to demonstrate improved efficacy and tolerability compared to marketed PARP inhibitors, supporting progression of these compounds into clinical studies.

<u>Acknowledgements</u>

Biochemical and biophysical assays were carried out by Proteros Biostructures GmbH; nanoBRET assays were performed by Proteros and Promega Corp; PARP trapping studies were performed by Sai Life Sciences Ltd; in vitro biology, ADME, PK and *in vivo* studies were conducted by BioDuro-Sundia and Pharmaron; microdialysis was performed by Pharmidex Pharmaceutical Services Ltd.

<u>*#Corresponding author*</u>

Alan Wise, PhD. CEO, Duke Street Bio Ltd. awise@dukesb.com www.dukestbio.com

